Муниципальное общеобразовательное бюджетное учреждение «Средняя общеобразовательная школа № 90» р.п. Чунский

РАБОЧАЯ ПРОГРАММА основного общего образования по физике

для обучающихся 7-9 классов

Предметная область: естественно-научное

Разработала: Фролова Надежда Михайловна, учитель физики высшей квалификационной категории

Пояснительная записка

Рабочая программа по физике для 7-9 классов составлена на основе следующих нормативно- правовых документов:

- Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- Приказа Министерства просвещения РФ от 22.03.2021 № 115 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования»;
- Приказом Минобрнауки России от 17.12.2010 № 1897 «Об утверждении и введении в действие федерального государственного образовательного стандарта основного общего образования» (с изменениями и дополнениями);
- Приказа Минобрнауки России от 31.05.2021 № 287 «Об утверждении и введении в действие федерального государственного образовательного стандарта основного общего образования»;
- Постановления Главного государственного санитарного врача РФ от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»»;
- Приказ Министерства просвещения РФ от 20.05.2020 № 254 «Об утверждении федерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность» (с изменениями и дополнениями) и других нормативно правовых актов, не противоречащих действующему законодательству в сфере образования.

Данная рабочая программа по физике для учащихся 7-9 классов разработана на основе рабочей программы по физике. 7-11 классы / Под ред. М.Л. Корневич. – М.: ИЛЕКСА, 2012. – 334 с.

Программа рассчитана на изучение базового курса физики учащимися 7-9 классов в течение 238часов (в том числе в 7 классе - 68 учебных часов из расчета 2 часа в неделю, в 8 классе - 68 учебных часов из расчета 2 часа в неделю и в 9 классе – 102 учебных часа из расчета 3 часа в неделю).

Цели:

- понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;
 - формирование у учащихся представлений о физической картине мира.
- овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения интеллектуальных проблем, задач и выполнения экспериментальных исследований; способности к самостоятельному приобретению новых знаний по физике в соответствии с жизненными потребностями и интересами;
- воспитание убежденности в познаваемости окружающего мира, в необходимости разумного использования достижений науки и технологии для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
- применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности.

Достижение этих целей обеспечивается решением следующих задач:

- развитие мышления учащихся, формирование у них навыка самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;
- овладение школьными знаниями об экспериментальных фактах, понятиях, законах, теориях, методах физической науки; о современной научной картине мира; о широких возможностях применения физических законов в технике и технологии;
- усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании физических явлений и законов;
- формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения; подготовка к продолжению образования и сознательному выбору профессии;

- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки.

Принципы и подходы к формированию программы:

Стандарт второго поколения (ФГОС) в сравнении со стандартом первого поколения предполагает деятельностный подход к обучению, где главная цель: развитие личности учащегося. Система образования отказывается от традиционного представления результатов обучения в виде знаний, умений и навыков. Формулировки стандарта указывают реальные виды деятельности, которыми следует овладеть к концу обучения, т. е. обучающиеся должны уметь учиться, самостоятельно добывать знания, анализировать, отбирать нужную информацию, уметь контактировать в различных по возрастному составу группах. Оптимальное сочетание теории, необходимой для успешного решения практических задач— главная идея УМК по физике системы учебников «Вертикаль» (А. В. Перышкина «Физика» для 7, 8 классов и А. В. Перышкина, Е. М. Гутник «Физика» для 9 класса), которая включает в себя и цифровые образовательные ресурсы (ЦОР) для системы Windows.

Концептуальные положения:

Современные научные представления о целостной научной картине мира, основных понятиях физики и методах сопоставления экспериментальных и теоретических знаний с практическими задачами отражены в содержательном материале учебников. Изложение теории и практики опирается:

- на понимание возрастающей роли естественных наук и научных исследований в современном мире;
- на овладение умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать полученные результаты;
- воспитание ответственного и бережного отношения к окружающей среде;

• формирование умений безопасного и эффективного использования лабораторного оборудования, проведения точных измерений и адекватной оценки полученных результатов, представления научно обоснованных аргументов своих действий, основанных на межпредметном анализе учебных задач.

Состав участников образовательного процесса:

Программа имеет базовый уровень, рассчитана на учащихся 7-9 классов общеобразовательной школы.

Общая характеристика учебного предмета

Школьный курс физики — системообразующий для естественно-научных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире. В 7 и 8 классах происходит знакомство с физическими явлениями, методом научного познания, формирование основных физических понятий, приобретение умений измерять физические величины, проводить лабораторный эксперимент по заданной схеме. В 9 классе начинается изучение основных физических законов, лабораторные работы становятся более сложными, школьники учатся планировать эксперимент самостоятельно.

Требования к планируемым результатам обучения и освоения физики в 7-9 классах

В результате изучения курса физики 7 класса ученик должен:

знать/понимать

- смысл понятий: физическое явление, физический закон, вещество, взаимодействие;
- смысл физических величин: путь, скорость, масса, плотность, сила, давление, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия;
- смысл физических законов: Паскаля, Архимеда;

уметь

- описывать и объяснять физические явления: равномерное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, диффузию;
- использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, массы, силы, давления;

- представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы трения от силы нормального давления, силы упругости от удлинения пружины;
- выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования физических знаний о механических явлениях;
- решать задачи на применение изученных физических законов;
- осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для рационального использования простых механизмов, обеспечения безопасности в процессе использования транспортных средств.

В результате изучения курса физики 8 класса ученик должен:

знать/понимать

- смысл понятий: электрическое поле, магнитное поле;
- смысл физических величин: внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы;
- смысл физических законов: сохранения энергии в тепловых процессах, Ома для участка цепи, Джоуля-Ленца, прямолинейного распространения света, отражения света;

уметь

- описывать и объяснять физические явления: теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, отражение, преломление света;
- использовать физические приборы и измерительные инструменты для измерения физических величин: температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;
- представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: температуры остывающего тела от времени, силы тока

от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;

- выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования физических знаний о тепловых, электромагнитных явлениях;
- решать задачи на применение изученных физических законов;
- осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для рационального использования, обеспечения безопасности в процессе использования электрических приборов, водопровода, сантехники и газовых приборов.

В результате изучения курса физики 9 класса ученик должен:

знать/понимать

- ✓ смысл понятий: электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения;
 - ✓ смысл физических величин: путь, скорость, ускорение, сила, импульс;
- ✓ смысл физических законов: Ньютона, всемирного тяготения, сохранения импульса и механической энергии;

уметь

- ✓ описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, электромагнитную индукцию, преломление и дисперсию света;
- ✓ использовать физические приборы и измерительные инструменты для измерения физических величин: естественного радиационного фона;
- ✓ представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: периода колебаний нитяного маятника от длины нити, периода колебаний пружинного маятника от массы груза и от жесткости пружины;
 - ✓ выражать результаты измерений и расчетов в единицах Международной системы;
- ✓ приводить примеры практического использования физических знаний о механических, электромагнитных явлениях;
 - ✓ решать задачи на применение изученных физических законов;

✓ осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);

✓ использовать приобретенные знания и умения в практической деятельности и повседневной жизни для рационального использования, обеспечения безопасности в процессе использования электрических приборов, оценки безопасности радиационного фона.

Личностные, метапредметные и предметные результаты освоения курса физики.

С введением ФГОС реализуется смена базовой парадигмы образования со «знаниевой» на «системно-деятельностную», т. е. акцент переносится с изучения основ наук на обеспечение развития УУД (ранее «общеучебных умений») на материале основ наук. Важнейшим компонентом содержания образования, стоящим в одном ряду с систематическими знаниями по предметам, становятся универсальные (метапредметные) умения (и стоящие за ними компетенции).

Поскольку концентрический принцип обучения остается актуальным в основной школе, то развитие личностных и метапредметных результатов идет непрерывно на всем содержательном и деятельностном материале.

Личностными результатами обучения физике в основной школе являются:

- Сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей обучающихся;
- Убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- Самостоятельность в приобретении новых знаний и практических умений;
- Готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- Мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- Формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- Овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- Понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- Формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- Приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- Развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- Освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- Формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные результаты обучения физике в основной школе представлены в разделе 6. Планируемые результаты изучения курса физики.

Общими предметными результатами изучения курса являются:

• умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений;

• развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез.

Содержание учебного курса

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание уделяется знакомству с методами научного познания окружающего мира, постановке проблем, требующих от обучающихся самостоятельной деятельности по их разрешению. Ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика физические методы изучения Гуманитарное значение физики как составной части общего образования состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире с последующим применением физических законов для изучения химии, биологии, физической географии, технологии, ОБЖ, в технике и повседневной жизни. Курс физики в программе основного общего образования структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения:

- механические явления,
- тепловые явления,
- электромагнитные явления,
- квантовые явления.

Курс физики основной школы построен в соотвествии с рядом идей:

- Идея целостности. В соответствии с ней курс является логически завершенным, он содержит материал из всех разделов физики, включает как вопросы классической, так и современной физики; уровень представления курса учитывает познавательные возможности учащихся.
- Идея преемственности. Содержание курса учитывает подготовку, полученную учащимися на предшествующем этапе при изучении естествознания.

- Идея вариативности. Ее реализация позволяет выбрать учащимся собственную «траекторию» изучения курса. Для этого предусмотрено осуществление уровневой дифференциации: в программе заложены два уровня изучения материала обычный, соответствующий образовательному стандарту, и повышенный.
- Идея генерализации. В соответствии с ней выделены такие стержневые понятия, как энергия, взаимодействие, вещество, поле. Ведущим в курсе является и представление о структурных уровнях материи.
- Идея гуманитаризации. Ее реализация предполагает использование гуманитарного потенциала физической науки, осмысление связи развития физики с развитием общества, мировоззренческих, нравственных, экологических проблем.
- Идея спирального построения курса. Ее выделение обусловлено необходимостью учета математической подготовки и познавательных возможностей учащихся

B соответствии с целями обучения физике учащихся основной школы сформулированными выше идеями, положенными в основу курса физики, он имеет следующее содержание и структуру. Курс начинается с введения, имеющего методологический характер. В нем дается представление о том, что изучает физика (физические явления, происходящие в микро-, макро- и мегамире), рассматриваются теоретический и экспериментальный методы изучения физических явлений, структура физического знания (понятия, законы, теории). Усвоение материала этой темы обеспечено предшествующей подготовкой учащихся по математике и природоведению. Затем изучаются явления макромира, объяснение которых не требует привлечения знаний о строении вещества (темы «Механические явления», «Звуковые явления», «Световые явления»). Тема «Первоначальные сведения о строении вещества» предшествует изучению явлений, которые объясняются на основе знаний о строении вещества. В ней рассматриваются основные положения молекулярно-кинетической теории, которые затем используются при объяснении тепловых явлений, механических и тепловых свойств газов, жидкостей и твердых тел. Изучение электрических явлений основывается на знаниях о строении атома, которые применяются далее для объяснения электростатических и электромагнитных явлений, электрического тока и проводимости различных сред. Таким образом, в 7—8 классах учащиеся знакомятся с наиболее распространенными и доступными для их понимания физическими явлениями (механическими, тепловыми, электрическими, магнитными, звуковыми, световыми), свойствами тел и учатся объяснять их. В 9 классе изучаются более сложные физические явления и более сложные законы. Так, учащиеся вновь возвращаются к изучению вопросов механики, но на данном этапе механика представлена как целостная фундаментальная физическая теория;

предусмотрено изучение всех структурных элементов этой теории, включая законы Ньютона и законы сохранения. Обсуждаются границы применимости классической механики, ее объяснительные и предсказательные функции. Затем следует тема «Механические колебания и волны», позволяющая показать применение законов механики к анализу колебательных и волновых процессов и создающая базу для изучения электромагнитных колебаний и волн. За темой «Электромагнитные колебания и волны» следует тема «Элементы квантовой физики», содержание которой направлено на формирование у учащихся некоторых квантовых представлений, в частности, представлений о дуализме и квантовании как неотъемлемых свойствах микромира, знаний об особенностях строения атома и атомного ядра. Завершается курс темой «Вселенная», позволяющей сформировать у учащихся систему астрономических знаний и показать действие физических законов в мегамире. Курс физики носит экспериментальный характер, поэтому большое внимание в нем уделено демонстрационному эксперименту и практическим работам учащихся, которые могут выполняться как в классе, так и дома. Содержание учебного материала в учебниках для 7-9 классов построено на единой системе понятий, отражающих основные темы (разделы) курса физики. Таким образом, завершенной предметной линией учебников обеспечивается преемственность изучения предмета в полном объеме на основной (второй) ступени общего образования. Содержательное распределение учебного материала в учебниках физики опирается на возрастные психологические особенности обучающихся основной школы (7-9 классы), которые характеризуются стремлением подростка к общению и совместной деятельности со сверстниками и особой чувствительностью к морально-этическому «кодексу товарищества», в котором заданы важнейшие нормы социального поведения взрослого мира. Учет особенностей подросткового возраста, успешность и своевременность формирования новообразований познавательной сферы, качеств и свойств личности связываются с активной позицией учителя, а также с адекватностью построения образовательного процесса и выбора условий и методик обучения. В учебниках 7 и 8 классов наряду с формированием первичных научных представлений об окружающем развиваются и систематизируются преимущественно практические умения представлять обрабатывать текстовую, графическую, числовую звуковую информацию ПО результатам проведенных экспериментов ДЛЯ документов и презентаций. Содержание учебника 9 класса в основном ориентировано на использование заданий из других предметных областей, которые следует реализовать в виде минипроектов. Программа представляет собой содержательное описание тематических разделов с раскрытием видов учебной деятельности при рассмотрении теории и выполнении практических работ. Вопросы и задания в учебниках способствуют овладению учащимися приемами анализа, синтеза, отбора и систематизации материала на определенную тему. Система вопросов и заданий к параграфам позволяет учитывать индивидуальные особенности обучающихся, фактически определяет индивидуальную образовательную траекторию. В содержании учебников присутствуют примеры и задания, способствующие сотрудничеству учащегося с педагогом и сверстниками в учебном процессе (метод проектов). Вопросы и задания соответствуют возрастным и психологическим особенностям обучающихся. Они способствуют развитию умения самостоятельной работы обучающегося с учебным материалом и развитию критического мышления.

Учебно-тематическое содержание курса (7 класс)

Nº	Название раздела	Кол-во часов
1	Введение. Физика и физические методы изучения природы	4
2	Первоначальные сведения о строении вещества	6
3	Взаимодействие тел	23
4	Давление твердых тел, жидкостей и газов	21
5	Работа и мощность. Энергия	13
6	6 Итоговая контрольная работа	
7	Итоговое повторение	2
8	Итого	68 (70)

Учебно-тематическое содержание курса (8 класс)

Nº	Название раздела	Кол-во часов
1	Тепловые явления	23
2	Электрические явления	29
3	Электромагнитные явления	5
4	Световые явления	10
5	Итоговая контрольная работа	1

6	Итоговое повторение	2
10	Итого	68(70)

Учебно-тематическое содержание курса (9 класс)

№	Название раздела	Кол-во
		часов
1	Законы взаимодействия и движения тел	35
2	Механические колебания и волны. Звук	15
3	Электромагнитное поле	25
4	Строение атома и атомного ядра	15
5	Строение и эволюция Вселенной	10
6	Итоговая контрольная работа	1
7	Итоговое повторение	1
8	Итого	102

7 класс

Введение. Физика и физические методы изучения природы (4 ч)

Физика – наука о природе. Наблюдение и описание физических явлений. Физические приборы. Физические величины и их измерение. Погрешности измерений. Международная система единиц. Физика и техника. Физика и развитие представлений о материальном мире.

Демонстрации.

Примеры механических, тепловых, электрических, магнитных и световых явлений. Физические приборы.

Лабораторная работа.

1. Определение цены деления измерительного прибора.

Первоначальные сведения о строении вещества (6 ч)

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Демонстрации.

Диффузия в газах и жидкостях. Сохранение объема жидкости при изменении формы сосуда. Сцепление свинцовых цилиндров.

Лабораторная работа.

2.Определение размеров малых тел.

Взаимодействие тел (23 ч)

Механическое движение. Относительность механического движения. Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Неравномерное движение. Графики зависимости пути и модуля скорости от времени движения. Явление инерции. Инертность тел. Масса тела. Измерение массы тела с помощью весов. Плотность вещества. Методы измерения массы и плотности. Взаимодействие тел. Сила. Правило сложения сил, действующих по одной прямой. Сила упругости. Закон Гука. Методы измерения силы. Динамометр. Графическое изображение силы. Явление тяготения. Сила тяжести. Связь между силой тяжести и массой. Вес тела. Сила трения. Трение скольжения, качения, покоя. Подшипники. Центр тяжести тела. Физическая природа небесных тел Солнечной Системы.

Демонстрации.

Равномерное прямолинейное движение. Относительность движения. Явление инерции. Взаимодействие тел. Сложение сил. Сила трения.

Лабораторные работы.

- 3.Измерение массы тела на рычажных весах.
- 4. Измерение объема твердого тела.
- 5. Определение плотности твердого тела.
- 6. Градуирование пружины и измерение сил динамометром.
- 7. Измерение силы трения с помощью динамометра.

Давление твердых тел, газов, жидкостей (21 ч)

Давление. Давление твердых тел. Давление газа. Объяснение давления на основе молекулярно-кинетических представлений. Закон Паскаля. Давление в жидкости и газе. Сообщающиеся сосуды. Шлюзы. Гидравлический пресс. Гидравлический тормоз.

Атмосферное давление. Опыт Торричелли. Методы измерения давления. Барометранероид. Изменение атмосферного давления с высотой. Манометр. Насос.

Закон Архимеда. Условие плавания тел. Плавание тел. Воздухоплавание.

Демонстрации. Зависимость давления твердого тела на опору от действующей силы и площади опоры. Обнаружение атмосферного давления. Измерение атмосферного давления барометром-анероидом. Закон Паскаля. Гидравлический пресс. Закон Архимеда.

Лабораторные работы.

8.Определение выталкивающей силы, действующей на погруженное в жидкость тело.

9. Выяснение условий плавания тела в жидкости.

Работа и мощность. Энергия (13 ч)

Механическая работа. Мощность. Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тела с закрепленной осью вращения. Виды равновесия тел. «Золотое правило» механики. Коэффициент полезного действия. Потенциальная и кинетическая энергия. Превращение энергии.

Демонстрации. Простые механизмы.

Лабораторные работы.

- 10. Выяснение условия равновесия рычага.
- 11. Определение КПД при подъеме тела по наклонной плоскости.

Итоговая контрольная работа (1 ч)

Итоговое повторение (2 ч)

8 класс

Тепловые явления (23 часа)

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Два способа изменения внутренней энергии: теплопередача и работа. Виды теплопередачи. Количество теплоты. Удельная теплоемкость вещества. Удельная теплота сгорания топлива. Закон сохранения энергии в механических и тепловых процессах.

Агрегатные состояния вещества. Плавление и отвердевание тел. Температура плавления. Удельная теплота плавления. Испарение и конденсация. Насыщенный пар. Относительная влажность воздуха и ее измерение. Психрометр. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Объяснение изменения агрегатных состояний на основе молекулярно-кинетических представлений. Преобразования энергии в тепловых двигателях. Двигатель внутреннего сгорания. Паровая турбина. Холодильник. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Демонстрации.

Явление испарения. Кипение воды. Зависимость температуры кипения от давления. Плавление и кристаллизация веществ. Измерение влажности воздуха психрометром. Устройство четырехтактного двигателя внутреннего сгорания. Устройство паровой турбины. Изменение энергии тела при совершении работы. Конвекция в жидкости. Теплопередача путем излучения. Сравнение удельных теплоемкостей различных веществ.

Лабораторные работы.

- 1. Сравнение количеств теплоты при смешивании воды разной температуры.
- 2.Измерение удельной теплоемкости твердого тела.

3. Измерение относительной влажности воздуха.

Электрические явления (29 часов)

Электризация тел. Два рода электрических зарядов. Проводники, непроводники (диэлектрики) и полупроводники. Взаимодействие заряженных тел. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атомов.

Электрический Гальванические ток. элементы аккумуляторы. Действия И электрического тока. Направление электрического тока. Электрическая цепь. Электрический ток в металлах. Носители электрического тока в полупроводниках, газах и электролитах. Полупроводниковые приборы. Сила тока. Амперметр. Электрическое напряжение. Вольтметр. Электрическое сопротивление. Закон Ома для участка электрической цепи. Удельное электрическое сопротивление. Реостаты. Последовательное и параллельное соединения проводников.

Работа и мощность тока. Количество теплоты, выделяемое проводником с током. Лампа накаливания. Электрические нагревательные приборы. Электрический счетчик. Расчет электроэнергии, потребляемой электроприбором. Короткое замыкание. Плавкие предохранители. Конденсатор. Правила безопасности при работе с электроприборами.

Демонстрации.

Электризация тел. Два рода электрических зарядов. Устройство и действие электроскопа. Проводники и изоляторы. Электризация через влияние. Перенос электрического заряда с одного тела на другое. Источники постоянного тока. Составление электрической цепи.

Лабораторные работы.

- 4. Сборка электрической цепи и измерение силы тока в ее различных участках.
- 5. Измерение напряжения на различных участках электрической цепи.
- 6. Регулирование силы тока реостатом.
- 7. Измерение сопротивления при помощи амперметра и вольтметра.
- 8. Измерение работы и мощности электрического тока в лампе.

Электромагнитные явления (5 часов)

Опыт Эрстеда. Магнитное поле тока. Магнитное поле катушки с током. Электромагниты и их применение. Постоянные магниты. Магнитное поле Земли. Магнитные бури. Действие магнитного поля на проводник с током. Электродвигатель. Динамик и микрофон.

Демонстрации.

Опыт Эрстеда. Принцип действия микрофона и громкоговорителя.

Лабораторные работы.

- 9. Сборка электромагнита и испытание его действия.
- 10. Изучение электрического двигателя постоянного тока (на модели).

Световые явления (10 часов)

Источники света. Прямолинейное распространение света в однородной среде. Отражение света. Видимое движение светил. Закон отражения. Плоское зеркало. Преломление света. Линза. Фокусное расстояние и оптическая сила линзы. Построение изображений в линзах. Глаз как оптическая система. Оптические приборы.

Демонстрации.

Источники света. Прямолинейное распространение света. Закон отражения света. Изображение в плоском зеркале. Преломление света. Ход лучей в собирающей и рассеивающей линзах. Получение изображений с помощью линз. Принцип действия проекционного аппарата. Модель глаза.

Лабораторные работы.

11. Получение изображения при помощи линзы.

Контрольная работа (1ч)

Итоговое повторение (2 часа)

9 класс

Законы взаимодействия и движения тел (35 часов)

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение. Мгновенная скорость. Ускорение. Графики зависимости скорости и перемещения от времени при прямолинейном равномерном и равноускоренном движениях. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Первый, второй и третий законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. Искусственные спутники Земли. Импульс. Закон сохранения импульса. Реактивное движение.

Демонстрации.

Относительность движения. Равноускоренное движение. Свободное падение тел в трубке Ньютона. Направление скорости при равномерном движении по окружности. Второй закон Ньютона. Третий закон Ньютона. Невесомость. Закон сохранения импульса. Реактивное движение..

Лабораторные работы и опыты.

- 1. Исследование равноускоренного движения без начальной скорости.
- 2.Измерение ускорения свободного падения.

Механические колебания и волны. Звук (15 часов)

Колебательное движение. Пружинный, нитяной, математический маятники. Свободные и вынужденные колебания. Затухающие колебания. Колебательная система. Амплитуда, период, частота колебаний. Превращение энергии при колебательном движении. Резонанс.

Распространение колебаний в упругих средах. Продольные и поперечные волны. Длина волны. Скорость волны. Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо.

Демонстрации.

Механические колебания. Механические волны. Звуковые колебания. Условия распространения звука.

Лабораторная работа.

3. Исследование зависимости периода и частоты свободных колебаний нитяного маятника от длины нити.

Электромагнитное поле (25 часов)

Магнитное поле. Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние.

Электромагнитное поле. Электромагнитные волны. Скорость электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Типы оптических спектров. Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Демонстрации.

Устройство конденсатора. Энергия заряженного конденсатора. Электромагнитные колебания. Свойства электромагнитных волн. Дисперсия света. Получение белого света при сложении света разных цветов.

Лабораторные работы.

- 4. Изучение явления электромагнитной индукции.
- 5. Наблюдение сплошного и линейчатого спектров.

Строение атома и атомного ядра (15 часов)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета-, гаммаизлучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Методы наблюдения и регистрации частиц в ядерной физике.

Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы использования АЭС. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

Демонстрации.

Модель опыта Резерфорда. Наблюдение треков в камере Вильсона. Устройство и действие счетчика ионизирующих частиц.

Лабораторные работы.

- 6. Измерение естественного радиационного фона дозиметром.
- 7. Изучение деления ядра атома урана по фотографии треков.
- 8.Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.
 - 9. Изучение треков заряженных частиц по готовым фотографиям.

Строение и эволюция Вселенной (10 часов)

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение , излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Итоговая контрольная работа (1 ч)

Итоговое повторение 2 часа

Описание учебно-методического и материально-технического обеспечения образовательного процесса:

Средства обучения

Учебно-лабораторное оборудование и приборы, технические и электронные средства обучения и контроля знаний учащихся, цифровые образовательные ресурсы, демонстрации оный и раздаточный материал.

Материально- техническое обеспечение:

Внутренними условиями реализации программы являются:

- наличие учебного помещения для проведения занятий;
- наличие наглядных и методических пособий (схемы, плакаты, презентации, справочная литература)

Перечень оборудования, с помощью которого будет реализована данная программа:

- персональный компьютеры (1 шт);
- цифровая лаборатория «Архимед» (3 шт);
- оборудование для лабораторных работ и экспериментов;
- веб-камера для демонстрации экспериментов;
- датчик напряжения двухканальный;
- цифровая видеокамера.

Список методической литературы для учителя

- 1.А.В. Перышкин. Физика 7 класс. Учебник для общеобразовательных учреждений-М.:Дрофа, 2011.
- 2. А.В. Перышкин. Физика 8 класс. Учебник для общеобразовательных учреждений-М.:Дрофа, 2013
- 3. А.В. Перышкин. Физика 9 класс. Учебник для общеобразовательных учреждений-М.:Дрофа, 2015
- 4. А.В. Чеботарева. Тесты по физике: 7 класс: к учебнику А.В. Перышкина «Физика. 7 класс: учебник для общеобразовательных учреждений-М.:Издательство «Экзамен», 2012.
- 5. А.В. Перышкин. Сост. Г.А. Лонцова. Сборник задач по физике: 7-9 кл.: к учебникам А.В. Перышкина и др. «Физика 7 класс», «Физика 8 класс», «Физика 9 класс». Учебнометодический комплект- М.: Издательство «Экзамен», 2012.
- 6. К.Э. Немченко. Физика в схемах и таблицах- М.: Эксмо, 2013.

Список литературы для учащихся, развивающей познавательный интерес

- 1. А.А. Фадеева. Физика. Карточки-задания. 9 класс: книга для учащихся-М.:Просвещение, 2009.
- 2. В.И. Лукашик, Е.В. Иванова. Сборник задач по физике для 7-9 классов общеобразовательных учреждений- М.:Просвещение, 2004.
- 3. Н.И.Зорин. Физика 7-8 класс. Контрольно –измерительные материалы-М.: ВАКО, 2013.

Перечень ЦОРов и ЭОРов

Электронные учебные издания:

- 1. Физика. Библиотека наглядных пособий. 7—11 классы (под редакцией Н. К. Ханнанова).
- 2. Лабораторные работы по физике. 7 класс (виртуальная физическая лаборатория).
- 3. Лабораторные работы по физике. 8 класс (виртуальная физическая лаборатория).

Лабораторные работы по физике. 9 класс (виртуальная физическая лаборатория).

Интернет источники:

http://www.fizika.ru/ - сайт для учителей и учащихся
http://physik.ucoz.ru/dir/obrazovanie_i_nauka/сайт учителей физики
http://fizportal.ru/phys/3- сайт учителей физики